Meocdeling Loggerhead Nesting
Patterns: How many Pscucdo-Ahsence

Points are Necessary?
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Do loggerhead turtles have a location preference when selecting
where to nest on Pensacola Beach?
® Can we identify preferred beach characteristics?

Related projects from the Computational Geomorphology & Modeling Lab:

'Spring 2024: Environmental Science student examined nesting preferences of
loggerhead turtles on Pensacola Beach

©® Spring 2024: Mathematics & Statistics student bootstrapped different ratios of
presence/psuedo-absence points

©® Ongoing: Environmental Science student examining different ratios of
presence/pseudo-absence points

@ Current project: Simulation study to determine how analysis results are affected by
increasing the number of pseudo-absence points.
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Whatis Pscucdo-Absence Data? @

® Type of background data
A set of data points or environmental variables that
represent locations in the study
~Useful for presence only or limited data
® Not true absence points
~~Available, but uninhabited, environment in area
~Used to model abundance data
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= Why use Pscuclo-Absence
Oata for this analysis?

Creates environmentally similar,
randomly generated points to use as
"absence” points
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Relevance

® Save time generating data points if 10:1 is not
needed
~Common ratiois 10:1
“Is this necessary?
Do we get accurate results with smaller
ratios?
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Simulate presence
and pseudo-
absence data

using the
observed
characteristics
from Pensacola
Beach

How?

Perform
statistical
analysis on each
simulated
dataset.

Examine the
distributions of
analysis results

(slopes, standard
errors, p-values)
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My Oata

y = Nested X = Nest Elevation
(meters)
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if a nest is present
if no nest is presen
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Nest Elevation

@ Nest elevation for my data

Cfaw, is defined as the elevation,
%’anc in meters, of the nest
Xy above the NAVD88

@ Chose because there was

an observed relationship
l between it and nested in a
G HOT'iZON1A] iSTANCE D i previous study
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Oescriptive Statistics and
Preliminary Analysis <&



Nest Elevation (meters)
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Linear vs. Logistic
Regression

® Linear regression is used to predict continuous
outcomes

® Logistic regression is used to predict categorical or
qualitative dependent variables, such as binary,
multinomial, or ordinal outcomes
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Linecar Regression
y = Po+ Prx+¢€

® vy is the continuous dependent variable, or the
outcome variable

@ X is the independent variable

® Bois the y-intercept of the line

® B,is the slope of the line

®cisthe error term
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Sinary Logistic Regression

® Binary logistic regression is used to model binary
outcomes.
@ Probability of nested in our case

- |1 if anestis present
9710 ifno nest is present
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Sinary Logistic Regression
log( d ) = Bo + B1x1 + - - - + Brx

1l — 7

@t is the probability of a certain outcome

® Bois the y intercept

®3,,B,.,....0« are the coefficients for the predictor
variables

®Xx, X,,..., X, are the predictor variables
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Simulation




Whatis Simulation

® Monte Carlo simulation: process of generating random
data
® Parameters ﬁ(), 51, L, 0 are specified in the
simulation
® Helps us understand how analysis results are affected
under different scenarios
~We know the true parameter values

Page 21 of 41



Simulation Process

® Created a function in RStudio that would iteratively construct datasets
@ Created data sets under different scenarios
~“Five size samples:
@ n=25, 50, 100, 150, 200
~“Four ratios of absence to presence:
€1:1,2:1, 5:1, 10:1
<~10,000 iterations under each scenario.
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Simulation Process

® Simulated x (nest elevation) based on observed data from
Pensacola Beach x ~ N(1.6, 0.8)

® Simulated y ~ Bin(n, 1, ratio)

® Set linear predictor to have intercept and slope of observed
data )

® Construct model y ~ x and save results (5i,5E[;i,P— value)
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Simulation Process

® Resulted in 10,000 datasets under each scenario
“Created 200,000 individual models

® Computed bias, MSE, and rejection rate under each

scenario
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Gvaluation of
Simulation
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@ Difference between the expected value and estimated value

AN A

Bias(5) = E[8] — B
{l[B] — the expected value of the estimator 5,

B = the true value of the parameter
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® MSE-Mean Squared Error
@ Measures the average squared difference between
actual and predicted values

n

1
MSE = — i — 3i)°
S nEﬁ(y Yi)

1=1

MSE(8) = Bias?(8) + Var(j)

A

where, Var(0) = 44[92] — ([ [é])
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Mean MSE by Ratio Mean MSE by Ratio
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MSE
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Conclusions

® Ratio matters in smaller sizes
““Hypothesis: Unbalanced data
® Saw a noticeable difference in bias, MSE, and rejection
rates across different ratios.
® As the sample size increases, the bias and MSE decrease
® and the rejection rate increases
®A 10:1 ratio is not necessary and may be harmful in smaller

datasets.
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- Future Resecarch

® Manuscript plans:

« Further examine imbalance in

nesting outcome
%Logistic regression for rare
events - Firth correction

® Include additional predictors
with multiple logistic regression

® Confusion matrix to examine
classification
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Thank You

Let’'s discuss. Any questions?







